Performs a test of Complete Spatial Randomness for each plate. This function is a wrapper around quadrat.test function working directly on the objects of adpcr.

test_panel(X, nx = 5, ny = 5, alternative = c("two.sided", "regular",
  "clustered"), method = c("Chisq", "MonteCarlo"), conditional = TRUE,
  nsim = 1999)

Arguments

X
Object of the adpcr class containing data from one or more panels.
nx
Number of quadrats in the x direction.
ny
Number of quadrats in the y direction.
alternative
character string (partially matched) specifying the alternative hypothesis.
method
character string (partially matched) specifying the test to use: either "Chisq" for the chi-squared test (the default), or "MonteCarlo" for a Monte Carlo test.
conditional
logical. Should the Monte Carlo test be conducted conditionally upon the observed number of points of the pattern? Ignored if method="Chisq".
nsim
The number of simulated samples to generate when method="MonteCarlo".

Value

A list of objects of class "htest" with the length equal to the number of plates (minimum 1).

Details

Under optimal conditions, the point pattern of dPCR events (e.g., positive droplet & negative droplets) should be randomly distrubuted over a planar chip. This function verifies this assumption using chi-square or Monte Carlo test. Arrays with non-random patterns should be checked for integrity.

Note

A similar result can be achived by using adpcr2ppp and quadrat.test. See Examples.

References

http://www.spatstat.org/

See also

quadrat.test.

Examples

many_panels <- sim_adpcr(m = 400, n = 765, times = 1000, pos_sums = FALSE, n_panels = 5)
#> The assumed volume of partitions in each run is equal to 1.
#> The assumed volume uncertainty in each run is equal to 0.
test_panel(many_panels)
#> $Experiment1.1 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 28.831, df = 24, p-value = 0.4531 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.2 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 13.333, df = 24, p-value = 0.07939 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.3 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 21.179, df = 24, p-value = 0.7437 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.4 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 19.365, df = 24, p-value = 0.5355 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.5 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 10.484, df = 24, p-value = 0.01551 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #>
#test only one plate test_panel(extract_run(many_panels, 3))
#> $Experiment1.3 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 21.179, df = 24, p-value = 0.7437 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #>
#do test_panel manually require(spatstat)
#> Loading required package: spatstat
#> Loading required package: nlme
#> Loading required package: rpart
#> #> spatstat 1.47-0 (nickname: ‘Responsible Gambler’) #> For an introduction to spatstat, type ‘beginner’
#> #> Attaching package: ‘spatstat’
#> The following object is masked from ‘package:MASS’: #> #> area
ppp_data <- adpcr2ppp(many_panels) lapply(ppp_data, function(single_panel) quadrat.test(single_panel))
#> $Experiment1.1 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 28.831, df = 24, p-value = 0.4531 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.2 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 13.333, df = 24, p-value = 0.07939 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.3 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 21.179, df = 24, p-value = 0.7437 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.4 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 19.365, df = 24, p-value = 0.5355 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #> #> $Experiment1.5 #> #> Chi-squared test of CSR using quadrat counts #> Pearson X2 statistic #> #> data: single_panel #> X2 = 10.484, df = 24, p-value = 0.01551 #> alternative hypothesis: two.sided #> #> Quadrats: 5 by 5 grid of tiles #>