The test for comparing counts from two or more digital PCR experiments.

test_counts(input, model = "ratio", conf.level = 0.95)

Arguments

input
object of class adpcr or dpcr with "nm" type.
model
may have one of following values: binomial, poisson, prop, ratio. See Details.
conf.level
confidence level of the intervals and groups.

Value

an object of class count_test.

Details

test_counts incorporates two different approaches to models: GLM (General Linear Model) and multiple pair-wise tests. The GLM fits counts data from different digital PCR experiments using quasibinomial or quasipoisson family. Comparisons between single experiments utilize Tukey's contrast and multiple t-tests (as provided by function glht).

In case of pair-wise tests, (rateratio.test or prop.test) are used to compare all pairs of experiments. The p-values are adjusted using the Benjamini & Hochberg method (p.adjust). Furthermore, confidence intervals are simultaneous.

Note

Mean number of template molecules per partition and its confidence intervals will vary depending on input.

References

Bretz F, Hothorn T, Westfall P, Multiple comparisons using R. Boca Raton, Florida, USA: Chapman & Hall/CRC Press (2010).

See also

Functions used by test_counts:

GUI presenting capabilities of the test: test_counts_gui.

Examples

#be warned, the examples of test_counts are time-consuming ## Not run: ------------------------------------ # adpcr1 <- sim_adpcr(m = 10, n = 765, times = 1000, pos_sums = FALSE, n_panels = 3) # adpcr2 <- sim_adpcr(m = 60, n = 550, times = 1000, pos_sums = FALSE, n_panels = 3) # adpcr2 <- rename_dpcr(adpcr2, exper = "Experiment2") # adpcr3 <- sim_adpcr(m = 10, n = 600, times = 1000, pos_sums = FALSE, n_panels = 3) # adpcr3 <- rename_dpcr(adpcr3, exper = "Experiment3") # # #compare experiments using binomial regression # two_groups_bin <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "binomial") # summary(two_groups_bin) # plot(two_groups_bin) # #plot aggregated results # plot(two_groups_bin, aggregate = TRUE) # #get coefficients # coef(two_groups_bin) # # #this time use Poisson regression # two_groups_pois <- test_counts(bind_dpcr(adpcr1, adpcr2), model = "poisson") # summary(two_groups_pois) # plot(two_groups_pois) # # #see how test behaves when results aren't significantly different # one_group <- test_counts(bind_dpcr(adpcr1, adpcr3)) # summary(one_group) # plot(one_group) ## ---------------------------------------------